Posts Tagged ‘pfam’

Pfam SARS-CoV-2 special update

April 2, 2020

The SARS-CoV-2 pandemic has mobilised a worldwide research effort to understand the pathogen itself and the mechanism of COVID-19 disease, as well as to identify treatment options. Although Pfam already provided useful annotation for SARS-CoV-2, we decided to update our models and annotations for this virus in an effort to help the research community. This post explains what was done and how we are making the data available as quickly as possible.

What have we done?

We assessed all the protein sequences provided by UniProt via its new COVID-19 portal (https://covid-19.uniprot.org/), identified those which lacked an existing Pfam model, and set about building models as required. In some cases we built families based on recently solved structures of SARS-CoV-2 proteins. For example, we built three new families representing the three structural domains of the NSP15 protein (Figure 1) based on the structure by Youngchang Kim and colleagues (http://europepmc.org/article/PPR/PPR115432). In other cases, such as Pfam’s RNA dependent RNA polymerase family (PF00680), we took our existing family and extended its taxonomic range to ensure it included the new SARS-CoV-2 sequences.

Figure 1. The structure of NSP15 (PDB:6VWW) from Kim et al. shows the three new Pfam domains. (1) CoV_NSP15_N (PF19219) Coronavirus replicase NSP15, N-terminal oligomerisation domain in red, (2) CoV_NSP15_M (PF19216) Coronavirus replicase NSP15, middle domain in blue and (3) CoV_NSP15_C (PF19215) Coronavirus replicase NSP15, uridylate-specific endoribonuclease in green.

We have also stratified our ID nomenclature and descriptions of the families to ensure they are both correct and consistent. The majority of the family identifiers now begin with either CoV, for coronavirus specific families, or bCoV for the families which are specific to the betacoronavirus clade, which SARS-CoV-2 belongs to. We have also fixed inconsistencies in the naming and descriptions of the various non-structural proteins, using NSPx for those proteins encoded by the replicase polyprotein, and NSx for those encoded by other ORFs. We are grateful to Philippe Le Mercier from the Swiss Institute of Bioinformatics who gave us valuable guidance for our nomenclature.

Where are the data?

You can access a small HMM library (Pfam-A.SARS-CoV-2.hmm) for all the Pfam families that match the SARS-CoV-2 protein sequences on the Pfam FTP site:

ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam_SARS-CoV-2_1.0/

You can also find a file (matches.scan) showing the matches of the models against the SARS-CoV-2 sequences in the same FTP location. These updates are not yet available on the Pfam website. We anticipate making them available in 6-8 weeks.  We hope you find our SARS-CoV-2 models useful for your research, and as always we welcome your feedback via email at pfam-help@ebi.ac.uk.

How to use this library?

This library is not compatible with the pfam_scan software that we normally recommend to reproduce Pfam matches, as this library only contains a small subset of models.  If you wish to compare these models to your own sequences, please use the following HMMER commands:

$ hmmpress  Pfam-A.SARS-CoV-2.hmm

This only needs to be performed once. Then to compare your sequences (in a file called my.fasta) to this special Pfam profile HMM library, then:

$ hmmscan --cut_ga --domtblout matches.scan Pfam-A.SARS-CoV-2.hmm my.fasta

The –domtblout option enables you to save the matches in a more convenient tabular form, if you do not want to parse the HMMER output.

And finally

We will be making Pfam alignments available during the next week and will produce another blog post describing them.

Posted by The Pfam team

We are recruiting!

August 7, 2019

We have two biocurator positions available to work on the Pfam and InterPro databases. Come and join our team!

The main role of the jobs will be to:

  • Create and maintain InterPro and Pfam entries through the assessment of protein signature models. This will involve using our curation interfaces and tools (using basic command line)
  • Write descriptive abstracts of protein families and domains, summarizing functional information found within the scientific literature.
  • Augment entries with annotation terms for use in automatic annotation pipelines, for example the use of GO annotations and other data standards.
  • Respond to user and collaborator queries and requests.
  • Help develop and deliver training materials, either in person or via the Train Online platform

 

Full details can be found on the EBI jobs pages:

https://www.embl.de/jobs/searchjobs/index.php?ref=EBI01490

https://www.embl.de/jobs/searchjobs/index.php?ref=EBI01418

 

If you have any questions, please get in touch.

 

Posted by Jaina and Lorna

Pfam 31.0 is released

March 8, 2017

Pfam 31.0 contains a total of 16712 families and 604 clans. Since the last release, we have built 415 new families, killed 9 families and created 11 new clans.  We have also been working on expanding our clan classification; in Pfam 31.0, over 36% of Pfam entries are placed within a clan. Read the rest of this entry »

Pfam train online

December 8, 2016

We now have an online Quick Tour that provides a brief introduction to the Pfam protein families database. It provides a basic description of Pfam, as well as advice on how to search the database and discover protein-related information. The tour also showcases various tools that allow users to visualize data in Pfam, and explains where to find out more about the resource. We recommend taking the tour to learn how to use Pfam effectively.

Pfam Quick Tour

Pfam 30.0 is available

July 1, 2016

Pfam 30.0, our second release based on UniProt reference proteomes, is now available. The new release contains a total of 16,306 families, with 22 new families and 11 families killed since the last release. The UniProt reference proteome set has expanded and now includes 17.7 million sequences, compared with 11.9 million when we made Pfam 29.0. In this release, we have updated the annotations on hundreds of Pfam entries, and renamed some of our Domains of Unknown Function (DUF) families.

DUFs are protein domains whose function is uncharacterised. Over time, as scientific knowledge increases and new data about proteins comes to light, more information about the function of a domain may become available. As a result, DUFs can be renamed and re-annotated with more meaningful descriptions. As part of Pfam 30.0, we have re-annotated 116 DUFs based on updated information in the UniProtKB database, the scientific literature, and feedback from Pfam and InterPro users. Examples of some our DUF updates in Pfam 30.0 are given below:

 

  • PF10265, created in release 23.0 and originally named DUF2217, has been renamed to Miga, a family of proteins that promote mitochondrial fusion.
  • PF10229, created in release 23.0 and originally named DUF2246, has been renamed as MMADHC, as it represents methylmalonic aciduria and homocystinuria type D proteins and their homologues.  The structure of this domain is shown below.

 

5cv0

Structure of MMADHC dimer, PDB:5CV0

 

  • PF12822, created in release 25.0 and originally named DUF3816, has been renamed to ECF_trnsprt, since it contains proteins identified as the substrate-specific component of energy-coupling factor (ECF) transporters.

Please note that we may change the identifier for a family (e.g. DUF2217), but we never change the accession for a family (e.g. PF10265).

If you find any more DUFs that can be assigned a name based on function, or any other annotation updates, please get in touch with us (pfam-help@ebi.ac.uk).

 

Pfam 29.0 is now available

December 22, 2015

Pfam 29.0, our second release of 2015, contains 16295 entries and 559 clans. We have made some major changes to our underlying sequence database and the data that are displayed on the website, which we’ve outlined below. Full details can be found in our Nucleic Acids Research paper, which is available here. Read the rest of this entry »

Moving to xfam.org

May 1, 2014

Back in November 2012 we announced that the Xfam team in the UK was moving from the Wellcome Trust Sanger Institute to the European Bioinformatics Institute (EMBL-EBI), just next door on the Wellcome Trust Genome Campus. On Tuesday we completed that move by switching off the Pfam and Rfam websites inside Sanger and redirecting all traffic to our shiny new home at xfam.org. You can now find the Pfam and Rfam websites at pfam.xfam.org and rfam.xfam.org respectively. Read the rest of this entry »

Short-term Pfam position available.

February 7, 2014

We have just advertised a 9-month maternity cover position in Pfam. We are looking for a skilled Bioinformatician to help us take Pfam into its next phase of development as we become more integrated into the European Bioinformatics Institute (EMBL-EBI).

Essential knowledge, skills and experience:

  • Degree in Science with relevant experience
  • Computer literacy (unix experience)
  • Programming skills in Perl, including OO Perl
  • Familiarity with writing production software
  • MySQL, or similar, expertise
  • Experience working with biological sequence data
  • Good communications skills

See all the details on the EBI jobs page.

Join Rfam, see the world

January 31, 2014

Rfam is recruiting! We are currently recruiting an RNA informatician to join our team. We’re looking for someone really enthusiastic about RNA and who’s interested in working with Rfam as we move to genome-based alignments and explore new technologies for the database and website.

If this is you, why not apply to join us as a Senior Bioinformatician?

We’ve moved, now the websites

January 30, 2014

In November 2012, we announced that the Xfam groups were moving the few tens of metres from the Wellcome Trust Sanger Institute to the European Bioinformatics Institute. We warned you then, that the websites would also eventually move. Read the rest of this entry »